

Nutrient Management for High Yield Soybeans

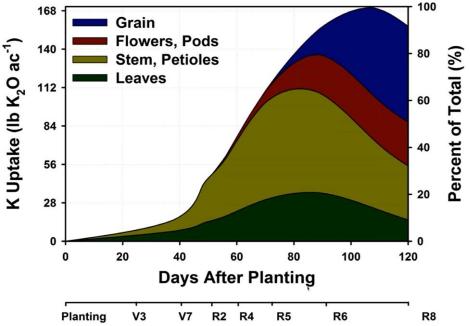
Soybean Nutritional Needs Higher Yields Mean Higher Nutrient Needs

Grain	Lb/bu	50 bu	75 bu	100 bu
Ν	3.30	165	248	330
P_2O_5	0.73	37	55	73
K ₂ O	1.20	60	90	120
S	0.18	9	14	18
Total S	0.35	18	26	35

International Plant Nutrition Institute, 2014

Nutrient Uptake and Removal by 60 Bushel Soybean (In pounds/acre, except for Zn and B, which are in ounces/acre)

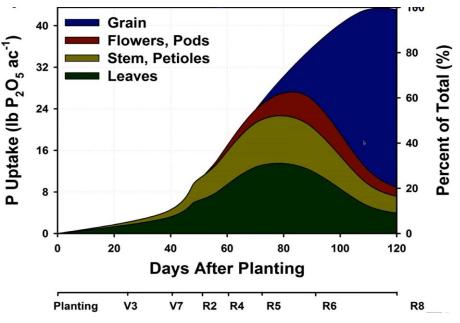
Nutrient	Required	Removed	Harvest Index (%)
Ν	245	179	73
P_2O_5	43	35	81
K ₂ O	170	70	41
S	17	10	61
Zn	4.8 oz	2.0 oz	44
В	4.6 oz	1.6 oz	34


Agron. J. 107:563-573 (2015)

Potassium Uptake & Partitioning – 60 Bu/Acre Soybeans

Reservoir of K in Stem and Leaf Petioles

- Maximum uptake rate of 3.5 lb K₂O per acre per day for 50 days
- Most (50%) K accumulation is in the stem and leaf petioles
- Only 41% of total removed with grain, rest returned to soil

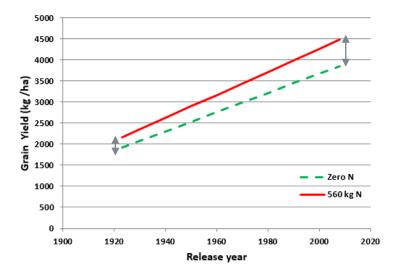

Data averaged across two varieties, two fertility regimes, and three site-years during 2012 and 2013 -- Agron. J. 107:563-573 (2015)

Phosphorus Uptake & Partitioning – 60 Bu/Acre Soybeans

High Seed Needs Must Come from Soil

- Rapid uptake for 70 days, 45% P uptake during seed fill
- No reservoir of P in the stem and leaf petioles
- Extensive grain removal (80%)

Data averaged across two varieties, two fertility regimes, and three site-years during 2012 and 2013 -- Agron. J. 107:563-573 (2015)



Modern Vs. Older Soybean Varieties Study

N Supply from Soil And Biological N Fixation was Insufficient to Maximize Yield

- Study in IL and IN tested 57 cultivars released between 1928 and 2008
- Grain yield increased with release year
- Grain yield (and protein) also increased with N fertilization
- The yield (and protein) response to N was higher with the modern varieties
- They yield response to N occur despite high soil fertility (OM levels of 2.9 to 4.1%)

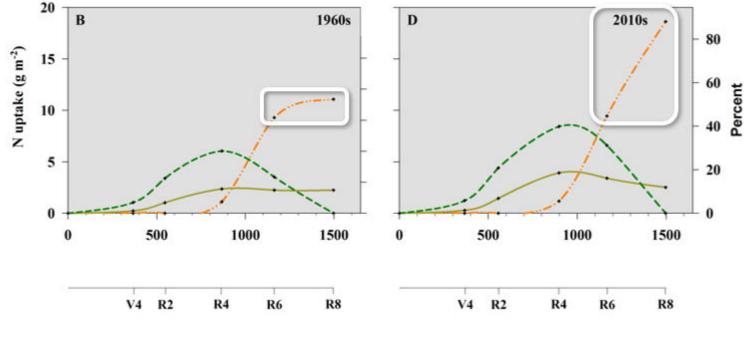
Grain yield of cultivars released from 1923 to 2008 (MG3)

Crop Science, 54:340-348 (2014)

<u>Λ</u>σνλη<mark>S</mark>ix

Modern Soybeans Differ from Older Cultivars

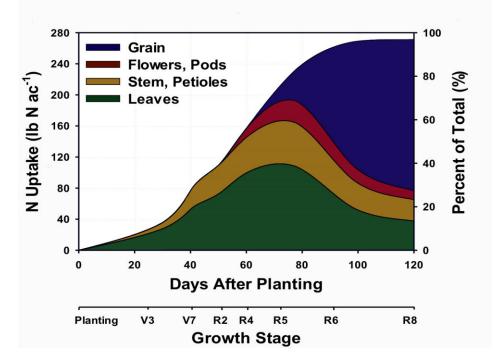
Traditional Fertilizer Recommendations are Based on 50+ Year-Old Research


- Greater leaf N concentration and N accumulation throughout the season in modern varieties
 - Increased leaf retention, less leaf senescence in lower canopy
 - Increased photosynthetic activity
- Increased nutrient allocation at full seed (R6) in modern varieties
 - 21% leaf N allocation in 1923 Vs. 32% in 2011
 - 64% total N removal in 1923 Vs. 75% total N removal in 2011

Pictures taken 8/26/12 ©2019 Casteel, Purdue University

Nitrogen Accumulation: 1960s vs. 2010s

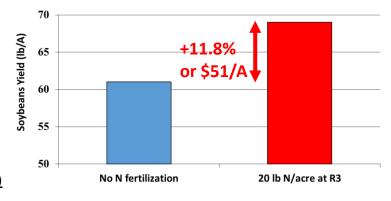
In Modern Varieties N Accumulation Continues Through the End of the Season



Nitrogen Uptake & Partitioning – 60 Bu/Acre Soybeans

Late-Season Nitrogen is Key

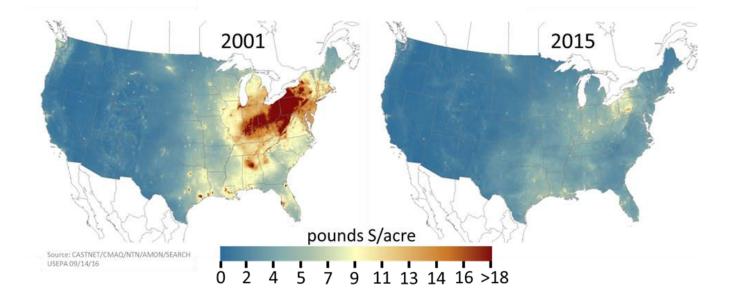
- Small amount N needed before N-fixation kicks in
- Only about half of the N accumulated in grain comes from N in other parts of the plant
- The other half of N accumulated in grain is taken up after flowering (R2)


Data averaged across two varieties, two fertility regimes, and three site-years during 2012 and 2013 -- Agron. J. 107:563-573 (2015)

Late-Season N Fertilization

High-Yielding Soybeans Benefit from Late-Season N

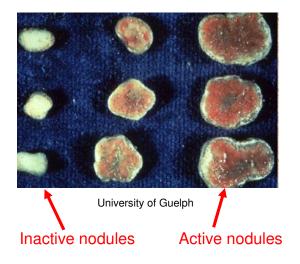
- Study on irrigated soybeans in Kansas
- No N at planting
- 0, 20, and 40 lb N /acre at early pod (R3)
- Average yield increase of 6.9 bu/acre or 11.8%
- Benefit assumptions:
 - > \$9/bu soybean, so 6.9 bu/A grosses...... \$62/A
 - \$0.25/lb N; \$6/A spreading cost, so 20 lb N/A cost (\$11/A)
 - > Net benefit \$51/A



Lamond et al. (Journal Production Agriculture, 1998)

Reduction in Total Sulfur Deposition

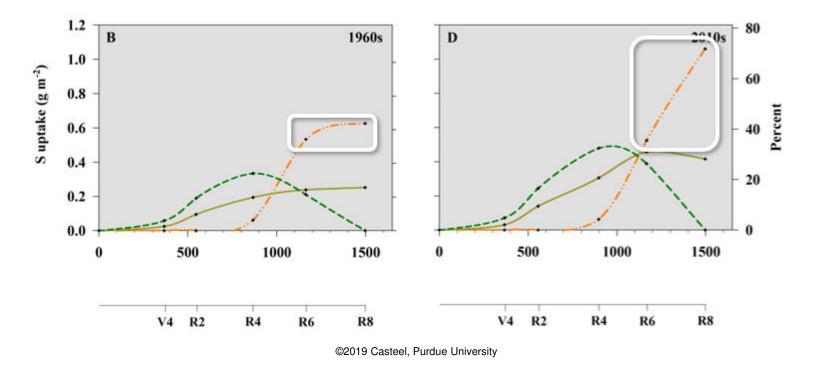
Less Acid Rain Means Less "Free" Sulfur Received by Cropland



Early-Season N and S on Soybeans

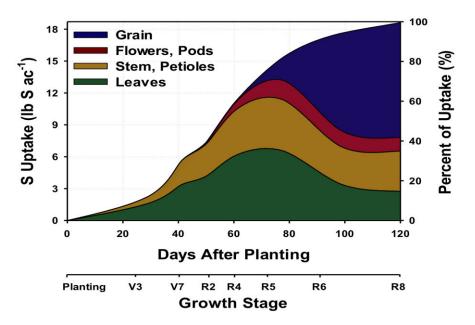
Ammonium Sulfate Provides an Effective Starter Boost

- Sulfur is required for the nodulation process
- 20 25 lb N/acre are often recommended since it takes a couple of weeks for nodules to be actively fixing atmospheric N
- The ammonium form of N can improve P and micronutrient (B, Zn, Mn) availability


Cross section of soybean nodules

Sulfur Accumulation: 1960s vs. 2010s

In Modern Varieties S Accumulation Continues Through the End of the Season



Sulfur Uptake & Partitioning – 60 Bu/Acre Soybeans

Sulfate-Sulfur is Also Key in the Reproductive Stages

- Similar to N, only about half the S accumulation in soybeans grain comes from other parts of the plant
- The other half of the S accumulated in the grain is taken up after flowering (R2)
- Late season availability of sulfate-S (pod and seed stages, or R4 to R6) in the soil profile is critical

Data averaged across two varieties, two fertility regimes, and three site-years during 2012 and 2013 -- Agron. J. 107:563-573 (2015)

tive Stages

Sulfur Needs: Rough Mass Balance

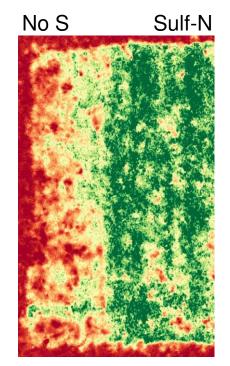
Also Consider "Situational" S-Deficiencies (i.e. early planting cold temperatures)

Yield	Need	Sky	O.M.				
			1%	2%	3%	4%	
bu/A	lb S/A						
			≈4	≈8	≈12	≈16	
50	18	≈5	9	5	1	+3	
75	26	≈5	17	13	9	5	
100	35	≈5	26	23	18	14	

Maximizing Soybean Yields

Bigger Size, Greener color and Better Canopy Closure with Sulfate

Sulf-N @ 20 lb S/acre



Aerial Photo and Normalized Difference Vegetation Index Map

Better Canopy Closure with Sulfate Fertilization

Maximizing Soybean Yields

Less Weed Intrusion, More Pod Retention and Branching with Sulfate Fertilization

No S

Sulf-N @ 20 lb S/acre

©2019 Casteel, Purdue University

Maximizing Soybean Yields

More Pods, Nods, and Branches with Sulfate Fertilization

31 pods, 17 nodes, 1 branch

Sulf-N @ 20 lb S/acre

45 pods,18 nodes,2 branches

Sulf-N Ammonium Sulfate on Soybeans

Split-Application of Non-Volatile, Readily-Available N and S

- Right time is about assuring nutrients are available when the crop needs them, as well as minimizing loss to the environment
 - Readily-available N and S early in the season are key to boost early growth and promote nodulation
 - Non-volatile N and readily-available S supplementation may be needed in the reproductive stages to ensure these elements don't become limiting in high yielding environments
 - High clearance, high-capacity spreaders have made it possible to top-dress ammonium sulfate at bloom to fulfill this need

How About Elemental Sulfur Sources?

Granular Elemental Sulfur (ES) Shows Inadequate Oxidation

- Sulfur must be in the sulfate form in order to be taken up by plant roots
- <u>Powder</u> ES oxidizes to sulfate due to a wide surface area in contact with soil particles
- <u>Granular</u> ES limits the contact between the ES and soil particles because the fine particles still cluster around the granule site even after disintegration and release of the micronized ES particles

Bentonite-ES 90 days after application

Bentonite-ES after granule disintegration


Chien et al., 2009; photos by Flore, Western Cooperative Fertilizers, Canada

Soybean Response to Different Sulfur Sources

Ammonium Sulfate was Twice as Effective than Elemental-S Granular Products

- Field study with three different S sources:
 - Ammonium sulfate (24%AS-S)
 - MAP-10S (5%ES+5%AS-S)
 - Bentonite-(ES+AS) (25%ES+25%AS-S)
- AS achieved maximum yields at half the total S rate than the mixed-S granular sources

Communications in Soil Science and Plant Analysis, 50:22, 2941-2947

Sulfate-S Key to Nodulation

- Samples were randomly picked from each fertilizer treatment at the 20 lb S/acre rate to compare nodulation
- Nodulation was higher when ammonium sulfate was applied
- Number of internodes per plant, and thus pods per plant, were also higher for the ammonium sulfate treatment

©2019 Casteel, Purdue University

Sulf-N® Ammonium Sulfate

Research-Supported, Field-Tested, Time-Proven

- 21-0-0-24S
- 100% ammonium-N
- 100% sulfate-S

Sulfur Availability To Plants

100% Of Sulfur In Ammonium Sulfate Is Immediately Plant-Available

Sulfate Sulfur > Powder ES > Granular Micronized ES

Roots only take up sulfate sulfur

ES must oxidize to sulfate first

Granular ES also suffers locality effect

ES = elemental sulfur Agron. J. 2016; 108: 1-11

Advansix